move libraries under projects because that'S what they are used for

This commit is contained in:
Nicu Hodos 2017-01-29 14:45:19 +01:00
parent 0d8df19c70
commit cd3442d96e
21 changed files with 2352 additions and 0 deletions

24
libraries/Debug/Debug.h Normal file
View File

@ -0,0 +1,24 @@
#include <SoftwareSerial_Tiny.h>
#if DEBUG
#define RxD 0
#define TxD 4
SoftwareSerial AttinySerial(RxD,TxD);
#endif
class Debug {
public:
void setup() {
#if DEBUG
AttinySerial.begin(9600);
#endif
}
void print(const char* msg) {
#if DEBUG
AttinySerial.println(msg);
#endif
}
};

View File

@ -0,0 +1,826 @@
/*
RCSwitch - Arduino libary for remote control outlet switches
Copyright (c) 2011 Suat Özgür. All right reserved.
Contributors:
- Andre Koehler / info(at)tomate-online(dot)de
- Gordeev Andrey Vladimirovich / gordeev(at)openpyro(dot)com
- Skineffect / http://forum.ardumote.com/viewtopic.php?f=2&t=46
- Dominik Fischer / dom_fischer(at)web(dot)de
- Frank Oltmanns / <first name>.<last name>(at)gmail(dot)com
- Andreas Steinel / A.<lastname>(at)gmail(dot)com
Project home: http://code.google.com/p/rc-switch/
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "RCSwitch_Tiny.h"
#include "PinChangeInterrupt.h"
#if not defined( RCSwitchDisableReceiving )
unsigned long RCSwitch::nReceivedValue = NULL;
unsigned int RCSwitch::nReceivedBitlength = 0;
unsigned int RCSwitch::nReceivedDelay = 0;
unsigned int RCSwitch::nReceivedProtocol = 0;
int RCSwitch::nReceiveTolerance = 60;
#endif
unsigned int RCSwitch::timings[RCSWITCH_MAX_CHANGES];
RCSwitch::RCSwitch() {
this->nTransmitterPin = -1;
this->setPulseLength(350);
this->setRepeatTransmit(10);
this->setProtocol(1);
#if not defined( RCSwitchDisableReceiving )
this->nReceiverInterrupt = -1;
this->setReceiveTolerance(60);
RCSwitch::nReceivedValue = NULL;
#endif
}
/**
* Sets the protocol to send.
*/
void RCSwitch::setProtocol(int nProtocol) {
this->nProtocol = nProtocol;
if (nProtocol == 1){
this->setPulseLength(350);
}
else if (nProtocol == 2) {
this->setPulseLength(650);
}
else if (nProtocol == 3) {
this->setPulseLength(100);
}
}
/**
* Sets the protocol to send with pulse length in microseconds.
*/
void RCSwitch::setProtocol(int nProtocol, int nPulseLength) {
this->nProtocol = nProtocol;
this->setPulseLength(nPulseLength);
}
/**
* Sets pulse length in microseconds
*/
void RCSwitch::setPulseLength(int nPulseLength) {
this->nPulseLength = nPulseLength;
}
/**
* Sets Repeat Transmits
*/
void RCSwitch::setRepeatTransmit(int nRepeatTransmit) {
this->nRepeatTransmit = nRepeatTransmit;
}
/**
* Set Receiving Tolerance
*/
#if not defined( RCSwitchDisableReceiving )
void RCSwitch::setReceiveTolerance(int nPercent) {
RCSwitch::nReceiveTolerance = nPercent;
}
#endif
/**
* Enable transmissions
*
* @param nTransmitterPin Arduino Pin to which the sender is connected to
*/
void RCSwitch::enableTransmit(int nTransmitterPin) {
this->nTransmitterPin = nTransmitterPin;
pinMode(this->nTransmitterPin, OUTPUT);
}
/**
* Disable transmissions
*/
void RCSwitch::disableTransmit() {
this->nTransmitterPin = -1;
}
/**
* Switch a remote switch on (Type D REV)
*
* @param sGroup Code of the switch group (A,B,C,D)
* @param nDevice Number of the switch itself (1..3)
*/
void RCSwitch::switchOn(char sGroup, int nDevice) {
this->sendTriState( this->getCodeWordD(sGroup, nDevice, true) );
}
/**
* Switch a remote switch off (Type D REV)
*
* @param sGroup Code of the switch group (A,B,C,D)
* @param nDevice Number of the switch itself (1..3)
*/
void RCSwitch::switchOff(char sGroup, int nDevice) {
this->sendTriState( this->getCodeWordD(sGroup, nDevice, false) );
}
/**
* Switch a remote switch on (Type C Intertechno)
*
* @param sFamily Familycode (a..f)
* @param nGroup Number of group (1..4)
* @param nDevice Number of device (1..4)
*/
void RCSwitch::switchOn(char sFamily, int nGroup, int nDevice) {
this->sendTriState( this->getCodeWordC(sFamily, nGroup, nDevice, true) );
}
/**
* Switch a remote switch off (Type C Intertechno)
*
* @param sFamily Familycode (a..f)
* @param nGroup Number of group (1..4)
* @param nDevice Number of device (1..4)
*/
void RCSwitch::switchOff(char sFamily, int nGroup, int nDevice) {
this->sendTriState( this->getCodeWordC(sFamily, nGroup, nDevice, false) );
}
/**
* Switch a remote switch on (Type B with two rotary/sliding switches)
*
* @param nAddressCode Number of the switch group (1..4)
* @param nChannelCode Number of the switch itself (1..4)
*/
void RCSwitch::switchOn(int nAddressCode, int nChannelCode) {
this->sendTriState( this->getCodeWordB(nAddressCode, nChannelCode, true) );
}
/**
* Switch a remote switch off (Type B with two rotary/sliding switches)
*
* @param nAddressCode Number of the switch group (1..4)
* @param nChannelCode Number of the switch itself (1..4)
*/
void RCSwitch::switchOff(int nAddressCode, int nChannelCode) {
this->sendTriState( this->getCodeWordB(nAddressCode, nChannelCode, false) );
}
/**
* Deprecated, use switchOn(char* sGroup, char* sDevice) instead!
* Switch a remote switch on (Type A with 10 pole DIP switches)
*
* @param sGroup Code of the switch group (refers to DIP switches 1..5 where "1" = on and "0" = off, if all DIP switches are on it's "11111")
* @param nChannelCode Number of the switch itself (1..5)
*/
void RCSwitch::switchOn(char* sGroup, int nChannel) {
char* code[6] = { "00000", "10000", "01000", "00100", "00010", "00001" };
this->switchOn(sGroup, code[nChannel]);
}
/**
* Deprecated, use switchOff(char* sGroup, char* sDevice) instead!
* Switch a remote switch off (Type A with 10 pole DIP switches)
*
* @param sGroup Code of the switch group (refers to DIP switches 1..5 where "1" = on and "0" = off, if all DIP switches are on it's "11111")
* @param nChannelCode Number of the switch itself (1..5)
*/
void RCSwitch::switchOff(char* sGroup, int nChannel) {
char* code[6] = { "00000", "10000", "01000", "00100", "00010", "00001" };
this->switchOff(sGroup, code[nChannel]);
}
/**
* Switch a remote switch on (Type A with 10 pole DIP switches)
*
* @param sGroup Code of the switch group (refers to DIP switches 1..5 where "1" = on and "0" = off, if all DIP switches are on it's "11111")
* @param sDevice Code of the switch device (refers to DIP switches 6..10 (A..E) where "1" = on and "0" = off, if all DIP switches are on it's "11111")
*/
void RCSwitch::switchOn(char* sGroup, char* sDevice) {
this->sendTriState( this->getCodeWordA(sGroup, sDevice, true) );
}
/**
* Switch a remote switch off (Type A with 10 pole DIP switches)
*
* @param sGroup Code of the switch group (refers to DIP switches 1..5 where "1" = on and "0" = off, if all DIP switches are on it's "11111")
* @param sDevice Code of the switch device (refers to DIP switches 6..10 (A..E) where "1" = on and "0" = off, if all DIP switches are on it's "11111")
*/
void RCSwitch::switchOff(char* sGroup, char* sDevice) {
this->sendTriState( this->getCodeWordA(sGroup, sDevice, false) );
}
/**
* Returns a char[13], representing the Code Word to be send.
* A Code Word consists of 9 address bits, 3 data bits and one sync bit but in our case only the first 8 address bits and the last 2 data bits were used.
* A Code Bit can have 4 different states: "F" (floating), "0" (low), "1" (high), "S" (synchronous bit)
*
* +-------------------------------+--------------------------------+-----------------------------------------+-----------------------------------------+----------------------+------------+
* | 4 bits address (switch group) | 4 bits address (switch number) | 1 bit address (not used, so never mind) | 1 bit address (not used, so never mind) | 2 data bits (on|off) | 1 sync bit |
* | 1=0FFF 2=F0FF 3=FF0F 4=FFF0 | 1=0FFF 2=F0FF 3=FF0F 4=FFF0 | F | F | on=FF off=F0 | S |
* +-------------------------------+--------------------------------+-----------------------------------------+-----------------------------------------+----------------------+------------+
*
* @param nAddressCode Number of the switch group (1..4)
* @param nChannelCode Number of the switch itself (1..4)
* @param bStatus Wether to switch on (true) or off (false)
*
* @return char[13]
*/
char* RCSwitch::getCodeWordB(int nAddressCode, int nChannelCode, boolean bStatus) {
int nReturnPos = 0;
static char sReturn[13];
char* code[5] = { "FFFF", "0FFF", "F0FF", "FF0F", "FFF0" };
if (nAddressCode < 1 || nAddressCode > 4 || nChannelCode < 1 || nChannelCode > 4) {
return '\0';
}
for (int i = 0; i<4; i++) {
sReturn[nReturnPos++] = code[nAddressCode][i];
}
for (int i = 0; i<4; i++) {
sReturn[nReturnPos++] = code[nChannelCode][i];
}
sReturn[nReturnPos++] = 'F';
sReturn[nReturnPos++] = 'F';
sReturn[nReturnPos++] = 'F';
if (bStatus) {
sReturn[nReturnPos++] = 'F';
} else {
sReturn[nReturnPos++] = '0';
}
sReturn[nReturnPos] = '\0';
return sReturn;
}
/**
* Returns a char[13], representing the Code Word to be send.
*
* getCodeWordA(char*, char*)
*
*/
char* RCSwitch::getCodeWordA(char* sGroup, char* sDevice, boolean bOn) {
static char sDipSwitches[13];
int i = 0;
int j = 0;
for (i=0; i < 5; i++) {
if (sGroup[i] == '0') {
sDipSwitches[j++] = 'F';
} else {
sDipSwitches[j++] = '0';
}
}
for (i=0; i < 5; i++) {
if (sDevice[i] == '0') {
sDipSwitches[j++] = 'F';
} else {
sDipSwitches[j++] = '0';
}
}
if ( bOn ) {
sDipSwitches[j++] = '0';
sDipSwitches[j++] = 'F';
} else {
sDipSwitches[j++] = 'F';
sDipSwitches[j++] = '0';
}
sDipSwitches[j] = '\0';
return sDipSwitches;
}
/**
* Like getCodeWord (Type C = Intertechno)
*/
char* RCSwitch::getCodeWordC(char sFamily, int nGroup, int nDevice, boolean bStatus) {
static char sReturn[13];
int nReturnPos = 0;
if ( (byte)sFamily < 97 || (byte)sFamily > 112 || nGroup < 1 || nGroup > 4 || nDevice < 1 || nDevice > 4) {
return '\0';
}
char* sDeviceGroupCode = dec2binWzerofill( (nDevice-1) + (nGroup-1)*4, 4 );
char familycode[16][5] = { "0000", "F000", "0F00", "FF00", "00F0", "F0F0", "0FF0", "FFF0", "000F", "F00F", "0F0F", "FF0F", "00FF", "F0FF", "0FFF", "FFFF" };
for (int i = 0; i<4; i++) {
sReturn[nReturnPos++] = familycode[ (int)sFamily - 97 ][i];
}
for (int i = 0; i<4; i++) {
sReturn[nReturnPos++] = (sDeviceGroupCode[3-i] == '1' ? 'F' : '0');
}
sReturn[nReturnPos++] = '0';
sReturn[nReturnPos++] = 'F';
sReturn[nReturnPos++] = 'F';
if (bStatus) {
sReturn[nReturnPos++] = 'F';
} else {
sReturn[nReturnPos++] = '0';
}
sReturn[nReturnPos] = '\0';
return sReturn;
}
/**
* Decoding for the REV Switch Type
*
* Returns a char[13], representing the Tristate to be send.
* A Code Word consists of 7 address bits and 5 command data bits.
* A Code Bit can have 3 different states: "F" (floating), "0" (low), "1" (high)
*
* +-------------------------------+--------------------------------+-----------------------+
* | 4 bits address (switch group) | 3 bits address (device number) | 5 bits (command data) |
* | A=1FFF B=F1FF C=FF1F D=FFF1 | 1=0FFF 2=F0FF 3=FF0F 4=FFF0 | on=00010 off=00001 |
* +-------------------------------+--------------------------------+-----------------------+
*
* Source: http://www.the-intruder.net/funksteckdosen-von-rev-uber-arduino-ansteuern/
*
* @param sGroup Name of the switch group (A..D, resp. a..d)
* @param nDevice Number of the switch itself (1..3)
* @param bStatus Wether to switch on (true) or off (false)
*
* @return char[13]
*/
char* RCSwitch::getCodeWordD(char sGroup, int nDevice, boolean bStatus){
static char sReturn[13];
int nReturnPos = 0;
// Building 4 bits address
// (Potential problem if dec2binWcharfill not returning correct string)
char *sGroupCode;
switch(sGroup){
case 'a':
case 'A':
sGroupCode = dec2binWcharfill(8, 4, 'F'); break;
case 'b':
case 'B':
sGroupCode = dec2binWcharfill(4, 4, 'F'); break;
case 'c':
case 'C':
sGroupCode = dec2binWcharfill(2, 4, 'F'); break;
case 'd':
case 'D':
sGroupCode = dec2binWcharfill(1, 4, 'F'); break;
default:
return '\0';
}
for (int i = 0; i<4; i++)
{
sReturn[nReturnPos++] = sGroupCode[i];
}
// Building 3 bits address
// (Potential problem if dec2binWcharfill not returning correct string)
char *sDevice;
switch(nDevice) {
case 1:
sDevice = dec2binWcharfill(4, 3, 'F'); break;
case 2:
sDevice = dec2binWcharfill(2, 3, 'F'); break;
case 3:
sDevice = dec2binWcharfill(1, 3, 'F'); break;
default:
return '\0';
}
for (int i = 0; i<3; i++)
sReturn[nReturnPos++] = sDevice[i];
// fill up rest with zeros
for (int i = 0; i<5; i++)
sReturn[nReturnPos++] = '0';
// encode on or off
if (bStatus)
sReturn[10] = '1';
else
sReturn[11] = '1';
// last position terminate string
sReturn[12] = '\0';
return sReturn;
}
/**
* @param sCodeWord /^[10FS]*$/ -> see getCodeWord
*/
void RCSwitch::sendTriState(char* sCodeWord) {
for (int nRepeat=0; nRepeat<nRepeatTransmit; nRepeat++) {
int i = 0;
while (sCodeWord[i] != '\0') {
switch(sCodeWord[i]) {
case '0':
this->sendT0();
break;
case 'F':
this->sendTF();
break;
case '1':
this->sendT1();
break;
}
i++;
}
this->sendSync();
}
}
void RCSwitch::send(unsigned long Code, unsigned int length) {
this->send( this->dec2binWzerofill(Code, length) );
}
void RCSwitch::send(char* sCodeWord) {
for (int nRepeat=0; nRepeat<nRepeatTransmit; nRepeat++) {
int i = 0;
while (sCodeWord[i] != '\0') {
switch(sCodeWord[i]) {
case '0':
this->send0();
break;
case '1':
this->send1();
break;
}
i++;
}
this->sendSync();
}
}
void RCSwitch::transmit(int nHighPulses, int nLowPulses) {
#if not defined ( RCSwitchDisableReceiving )
boolean disabled_Receive = false;
int nReceiverInterrupt_backup = nReceiverInterrupt;
#endif
if (this->nTransmitterPin != -1) {
#if not defined( RCSwitchDisableReceiving )
if (this->nReceiverInterrupt != -1) {
this->disableReceive();
disabled_Receive = true;
}
#endif
digitalWrite(this->nTransmitterPin, HIGH);
delayMicroseconds( this->nPulseLength * nHighPulses);
digitalWrite(this->nTransmitterPin, LOW);
delayMicroseconds( this->nPulseLength * nLowPulses);
#if not defined( RCSwitchDisableReceiving )
if(disabled_Receive){
this->enableReceive(nReceiverInterrupt_backup);
}
#endif
}
}
/**
* Sends a "0" Bit
* _
* Waveform Protocol 1: | |___
* _
* Waveform Protocol 2: | |__
*/
void RCSwitch::send0() {
if (this->nProtocol == 1){
this->transmit(1,3);
}
else if (this->nProtocol == 2) {
this->transmit(1,2);
}
else if (this->nProtocol == 3) {
this->transmit(4,11);
}
}
/**
* Sends a "1" Bit
* ___
* Waveform Protocol 1: | |_
* __
* Waveform Protocol 2: | |_
*/
void RCSwitch::send1() {
if (this->nProtocol == 1){
this->transmit(3,1);
}
else if (this->nProtocol == 2) {
this->transmit(2,1);
}
else if (this->nProtocol == 3) {
this->transmit(9,6);
}
}
/**
* Sends a Tri-State "0" Bit
* _ _
* Waveform: | |___| |___
*/
void RCSwitch::sendT0() {
this->transmit(1,3);
this->transmit(1,3);
}
/**
* Sends a Tri-State "1" Bit
* ___ ___
* Waveform: | |_| |_
*/
void RCSwitch::sendT1() {
this->transmit(3,1);
this->transmit(3,1);
}
/**
* Sends a Tri-State "F" Bit
* _ ___
* Waveform: | |___| |_
*/
void RCSwitch::sendTF() {
this->transmit(1,3);
this->transmit(3,1);
}
/**
* Sends a "Sync" Bit
* _
* Waveform Protocol 1: | |_______________________________
* _
* Waveform Protocol 2: | |__________
*/
void RCSwitch::sendSync() {
if (this->nProtocol == 1){
this->transmit(1,31);
}
else if (this->nProtocol == 2) {
this->transmit(1,10);
}
else if (this->nProtocol == 3) {
this->transmit(1,71);
}
}
#if not defined( RCSwitchDisableReceiving )
/**
* Enable receiving data
*/
void RCSwitch::enableReceive(int interrupt) {
this->nReceiverInterrupt = interrupt;
this->enableReceive();
}
void RCSwitch::enableReceive() {
if (this->nReceiverInterrupt != -1) {
RCSwitch::nReceivedValue = NULL;
RCSwitch::nReceivedBitlength = NULL;
// attachInterrupt(this->nReceiverInterrupt, handleInterrupt, CHANGE);
attachPinChangeInterrupt(this->nReceiverInterrupt, handleInterrupt, CHANGE);
}
}
/**
* Disable receiving data
*/
void RCSwitch::disableReceive() {
detachInterrupt(this->nReceiverInterrupt);
this->nReceiverInterrupt = -1;
}
bool RCSwitch::available() {
return RCSwitch::nReceivedValue != NULL;
}
void RCSwitch::resetAvailable() {
RCSwitch::nReceivedValue = NULL;
}
unsigned long RCSwitch::getReceivedValue() {
return RCSwitch::nReceivedValue;
}
unsigned int RCSwitch::getReceivedBitlength() {
return RCSwitch::nReceivedBitlength;
}
unsigned int RCSwitch::getReceivedDelay() {
return RCSwitch::nReceivedDelay;
}
unsigned int RCSwitch::getReceivedProtocol() {
return RCSwitch::nReceivedProtocol;
}
unsigned int* RCSwitch::getReceivedRawdata() {
return RCSwitch::timings;
}
/**
*
*/
bool RCSwitch::receiveProtocol1(unsigned int changeCount){
unsigned long code = 0;
unsigned long delay = RCSwitch::timings[0] / 31;
unsigned long delayTolerance = delay * RCSwitch::nReceiveTolerance * 0.01;
for (int i = 1; i<changeCount ; i=i+2) {
if (RCSwitch::timings[i] > delay-delayTolerance && RCSwitch::timings[i] < delay+delayTolerance && RCSwitch::timings[i+1] > delay*3-delayTolerance && RCSwitch::timings[i+1] < delay*3+delayTolerance) {
code = code << 1;
} else if (RCSwitch::timings[i] > delay*3-delayTolerance && RCSwitch::timings[i] < delay*3+delayTolerance && RCSwitch::timings[i+1] > delay-delayTolerance && RCSwitch::timings[i+1] < delay+delayTolerance) {
code+=1;
code = code << 1;
} else {
// Failed
i = changeCount;
code = 0;
}
}
code = code >> 1;
if (changeCount > 6) { // ignore < 4bit values as there are no devices sending 4bit values => noise
RCSwitch::nReceivedValue = code;
RCSwitch::nReceivedBitlength = changeCount / 2;
RCSwitch::nReceivedDelay = delay;
RCSwitch::nReceivedProtocol = 1;
}
if (code == 0){
return false;
}else if (code != 0){
return true;
}
}
bool RCSwitch::receiveProtocol2(unsigned int changeCount){
unsigned long code = 0;
unsigned long delay = RCSwitch::timings[0] / 10;
unsigned long delayTolerance = delay * RCSwitch::nReceiveTolerance * 0.01;
for (int i = 1; i<changeCount ; i=i+2) {
if (RCSwitch::timings[i] > delay-delayTolerance && RCSwitch::timings[i] < delay+delayTolerance && RCSwitch::timings[i+1] > delay*2-delayTolerance && RCSwitch::timings[i+1] < delay*2+delayTolerance) {
code = code << 1;
} else if (RCSwitch::timings[i] > delay*2-delayTolerance && RCSwitch::timings[i] < delay*2+delayTolerance && RCSwitch::timings[i+1] > delay-delayTolerance && RCSwitch::timings[i+1] < delay+delayTolerance) {
code+=1;
code = code << 1;
} else {
// Failed
i = changeCount;
code = 0;
}
}
code = code >> 1;
if (changeCount > 6) { // ignore < 4bit values as there are no devices sending 4bit values => noise
RCSwitch::nReceivedValue = code;
RCSwitch::nReceivedBitlength = changeCount / 2;
RCSwitch::nReceivedDelay = delay;
RCSwitch::nReceivedProtocol = 2;
}
if (code == 0){
return false;
}else if (code != 0){
return true;
}
}
/** Protocol 3 is used by BL35P02.
*
*/
bool RCSwitch::receiveProtocol3(unsigned int changeCount){
unsigned long code = 0;
unsigned long delay = RCSwitch::timings[0] / PROTOCOL3_SYNC_FACTOR;
unsigned long delayTolerance = delay * RCSwitch::nReceiveTolerance * 0.01;
for (int i = 1; i<changeCount ; i=i+2) {
if (RCSwitch::timings[i] > delay*PROTOCOL3_0_HIGH_CYCLES - delayTolerance
&& RCSwitch::timings[i] < delay*PROTOCOL3_0_HIGH_CYCLES + delayTolerance
&& RCSwitch::timings[i+1] > delay*PROTOCOL3_0_LOW_CYCLES - delayTolerance
&& RCSwitch::timings[i+1] < delay*PROTOCOL3_0_LOW_CYCLES + delayTolerance) {
code = code << 1;
} else if (RCSwitch::timings[i] > delay*PROTOCOL3_1_HIGH_CYCLES - delayTolerance
&& RCSwitch::timings[i] < delay*PROTOCOL3_1_HIGH_CYCLES + delayTolerance
&& RCSwitch::timings[i+1] > delay*PROTOCOL3_1_LOW_CYCLES - delayTolerance
&& RCSwitch::timings[i+1] < delay*PROTOCOL3_1_LOW_CYCLES + delayTolerance) {
code+=1;
code = code << 1;
} else {
// Failed
i = changeCount;
code = 0;
}
}
code = code >> 1;
if (changeCount > 6) { // ignore < 4bit values as there are no devices sending 4bit values => noise
RCSwitch::nReceivedValue = code;
RCSwitch::nReceivedBitlength = changeCount / 2;
RCSwitch::nReceivedDelay = delay;
RCSwitch::nReceivedProtocol = 3;
}
if (code == 0){
return false;
}else if (code != 0){
return true;
}
}
void RCSwitch::handleInterrupt() {
static unsigned int duration;
static unsigned int changeCount;
static unsigned long lastTime;
static unsigned int repeatCount;
long time = micros();
duration = time - lastTime;
if (duration > 5000 && duration > RCSwitch::timings[0] - 200 && duration < RCSwitch::timings[0] + 200) {
repeatCount++;
changeCount--;
if (repeatCount == 2) {
if (receiveProtocol1(changeCount) == false){
if (receiveProtocol2(changeCount) == false){
if (receiveProtocol3(changeCount) == false){
//failed
}
}
}
repeatCount = 0;
}
changeCount = 0;
} else if (duration > 5000) {
changeCount = 0;
}
if (changeCount >= RCSWITCH_MAX_CHANGES) {
changeCount = 0;
repeatCount = 0;
}
RCSwitch::timings[changeCount++] = duration;
lastTime = time;
}
#endif
/**
* Turns a decimal value to its binary representation
*/
char* RCSwitch::dec2binWzerofill(unsigned long Dec, unsigned int bitLength){
return dec2binWcharfill(Dec, bitLength, '0');
}
char* RCSwitch::dec2binWcharfill(unsigned long Dec, unsigned int bitLength, char fill){
static char bin[64];
unsigned int i=0;
while (Dec > 0) {
bin[32+i++] = ((Dec & 1) > 0) ? '1' : fill;
Dec = Dec >> 1;
}
for (unsigned int j = 0; j< bitLength; j++) {
if (j >= bitLength - i) {
bin[j] = bin[ 31 + i - (j - (bitLength - i)) ];
}else {
bin[j] = fill;
}
}
bin[bitLength] = '\0';
return bin;
}

View File

@ -0,0 +1,144 @@
/*
RCSwitch - Arduino libary for remote control outlet switches
Copyright (c) 2011 Suat Özgür. All right reserved.
Contributors:
- Andre Koehler / info(at)tomate-online(dot)de
- Gordeev Andrey Vladimirovich / gordeev(at)openpyro(dot)com
- Skineffect / http://forum.ardumote.com/viewtopic.php?f=2&t=46
- Dominik Fischer / dom_fischer(at)web(dot)de
- Frank Oltmanns / <first name>.<last name>(at)gmail(dot)com
Project home: http://code.google.com/p/rc-switch/
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef _RCSwitch_h
#define _RCSwitch_h
#if defined(ARDUINO) && ARDUINO >= 100
#include "Arduino.h"
#elif defined(ENERGIA) // LaunchPad, FraunchPad and StellarPad specific
#include "Energia.h"
#else
#include "WProgram.h"
#endif
// At least for the ATTiny X4/X5, receiving has to be disabled due to
// missing libm depencies (udivmodhi4)
#if defined( __AVR_ATtinyX5__ ) or defined ( __AVR_ATtinyX4__ )
#define RCSwitchDisableReceiving
#endif
// Number of maximum High/Low changes per packet.
// We can handle up to (unsigned long) => 32 bit * 2 H/L changes per bit + 2 for sync
#define RCSWITCH_MAX_CHANGES 67
#define PROTOCOL3_SYNC_FACTOR 71
#define PROTOCOL3_0_HIGH_CYCLES 4
#define PROTOCOL3_0_LOW_CYCLES 11
#define PROTOCOL3_1_HIGH_CYCLES 9
#define PROTOCOL3_1_LOW_CYCLES 6
class RCSwitch {
public:
RCSwitch();
void switchOn(int nGroupNumber, int nSwitchNumber);
void switchOff(int nGroupNumber, int nSwitchNumber);
void switchOn(char* sGroup, int nSwitchNumber);
void switchOff(char* sGroup, int nSwitchNumber);
void switchOn(char sFamily, int nGroup, int nDevice);
void switchOff(char sFamily, int nGroup, int nDevice);
void switchOn(char* sGroup, char* sDevice);
void switchOff(char* sGroup, char* sDevice);
void switchOn(char sGroup, int nDevice);
void switchOff(char sGroup, int nDevice);
void sendTriState(char* Code);
void send(unsigned long Code, unsigned int length);
void send(char* Code);
#if not defined( RCSwitchDisableReceiving )
void enableReceive(int interrupt);
void enableReceive();
void disableReceive();
bool available();
void resetAvailable();
unsigned long getReceivedValue();
unsigned int getReceivedBitlength();
unsigned int getReceivedDelay();
unsigned int getReceivedProtocol();
unsigned int* getReceivedRawdata();
#endif
void enableTransmit(int nTransmitterPin);
void disableTransmit();
void setPulseLength(int nPulseLength);
void setRepeatTransmit(int nRepeatTransmit);
#if not defined( RCSwitchDisableReceiving )
void setReceiveTolerance(int nPercent);
#endif
void setProtocol(int nProtocol);
void setProtocol(int nProtocol, int nPulseLength);
private:
char* getCodeWordB(int nGroupNumber, int nSwitchNumber, boolean bStatus);
char* getCodeWordA(char* sGroup, int nSwitchNumber, boolean bStatus);
char* getCodeWordA(char* sGroup, char* sDevice, boolean bStatus);
char* getCodeWordC(char sFamily, int nGroup, int nDevice, boolean bStatus);
char* getCodeWordD(char group, int nDevice, boolean bStatus);
void sendT0();
void sendT1();
void sendTF();
void send0();
void send1();
void sendSync();
void transmit(int nHighPulses, int nLowPulses);
static char* dec2binWzerofill(unsigned long dec, unsigned int length);
static char* dec2binWcharfill(unsigned long dec, unsigned int length, char fill);
#if not defined( RCSwitchDisableReceiving )
static void handleInterrupt();
static bool receiveProtocol1(unsigned int changeCount);
static bool receiveProtocol2(unsigned int changeCount);
static bool receiveProtocol3(unsigned int changeCount);
int nReceiverInterrupt;
#endif
int nTransmitterPin;
int nPulseLength;
int nRepeatTransmit;
char nProtocol;
#if not defined( RCSwitchDisableReceiving )
static int nReceiveTolerance;
static unsigned long nReceivedValue;
static unsigned int nReceivedBitlength;
static unsigned int nReceivedDelay;
static unsigned int nReceivedProtocol;
#endif
/*
* timings[0] contains sync timing, followed by a number of bits
*/
static unsigned int timings[RCSWITCH_MAX_CHANGES];
};
#endif

View File

@ -0,0 +1,24 @@
/*
Example for receiving
http://code.google.com/p/rc-switch/
If you want to visualize a telegram copy the raw data and
paste it into http://test.sui.li/oszi/
*/
#include <RCSwitch.h>
RCSwitch mySwitch = RCSwitch();
void setup() {
Serial.begin(9600);
mySwitch.enableReceive(0); // Receiver on inerrupt 0 => that is pin #2
}
void loop() {
if (mySwitch.available()) {
output(mySwitch.getReceivedValue(), mySwitch.getReceivedBitlength(), mySwitch.getReceivedDelay(), mySwitch.getReceivedRawdata(),mySwitch.getReceivedProtocol());
mySwitch.resetAvailable();
}
}

View File

@ -0,0 +1,20 @@
static char * dec2binWzerofill(unsigned long Dec, unsigned int bitLength){
static char bin[64];
unsigned int i=0;
while (Dec > 0) {
bin[32+i++] = (Dec & 1 > 0) ? '1' : '0';
Dec = Dec >> 1;
}
for (unsigned int j = 0; j< bitLength; j++) {
if (j >= bitLength - i) {
bin[j] = bin[ 31 + i - (j - (bitLength - i)) ];
}else {
bin[j] = '0';
}
}
bin[bitLength] = '\0';
return bin;
}

View File

@ -0,0 +1,52 @@
void output(unsigned long decimal, unsigned int length, unsigned int delay, unsigned int* raw, unsigned int protocol) {
if (decimal == 0) {
Serial.print("Unknown encoding.");
} else {
char* b = dec2binWzerofill(decimal, length);
Serial.print("Decimal: ");
Serial.print(decimal);
Serial.print(" (");
Serial.print( length );
Serial.print("Bit) Binary: ");
Serial.print( b );
Serial.print(" Tri-State: ");
Serial.print( bin2tristate( b) );
Serial.print(" PulseLength: ");
Serial.print(delay);
Serial.print(" microseconds");
Serial.print(" Protocol: ");
Serial.println(protocol);
}
Serial.print("Raw data: ");
for (int i=0; i<= length*2; i++) {
Serial.print(raw[i]);
Serial.print(",");
}
Serial.println();
Serial.println();
}
static char* bin2tristate(char* bin) {
char returnValue[50];
int pos = 0;
int pos2 = 0;
while (bin[pos]!='\0' && bin[pos+1]!='\0') {
if (bin[pos]=='0' && bin[pos+1]=='0') {
returnValue[pos2] = '0';
} else if (bin[pos]=='1' && bin[pos+1]=='1') {
returnValue[pos2] = '1';
} else if (bin[pos]=='0' && bin[pos+1]=='1') {
returnValue[pos2] = 'F';
} else {
return "not applicable";
}
pos = pos+2;
pos2++;
}
returnValue[pos2] = '\0';
return returnValue;
}

View File

@ -0,0 +1,35 @@
/*
Simple example for receiving
http://code.google.com/p/rc-switch/
*/
#include <RCSwitch.h>
RCSwitch mySwitch = RCSwitch();
void setup() {
Serial.begin(9600);
mySwitch.enableReceive(0); // Receiver on inerrupt 0 => that is pin #2
}
void loop() {
if (mySwitch.available()) {
int value = mySwitch.getReceivedValue();
if (value == 0) {
Serial.print("Unknown encoding");
} else {
Serial.print("Received ");
Serial.print( mySwitch.getReceivedValue() );
Serial.print(" / ");
Serial.print( mySwitch.getReceivedBitlength() );
Serial.print("bit ");
Serial.print("Protocol: ");
Serial.println( mySwitch.getReceivedProtocol() );
}
mySwitch.resetAvailable();
}
}

View File

@ -0,0 +1,57 @@
/*
Example for different sending methods
http://code.google.com/p/rc-switch/
*/
#include <RCSwitch.h>
RCSwitch mySwitch = RCSwitch();
void setup() {
Serial.begin(9600);
// Transmitter is connected to Arduino Pin #10
mySwitch.enableTransmit(10);
// Optional set pulse length.
// mySwitch.setPulseLength(320);
// Optional set protocol (default is 1, will work for most outlets)
// mySwitch.setProtocol(2);
// Optional set number of transmission repetitions.
// mySwitch.setRepeatTransmit(15);
}
void loop() {
/* See Example: TypeA_WithDIPSwitches */
mySwitch.switchOn("11111", "00010");
delay(1000);
mySwitch.switchOn("11111", "00010");
delay(1000);
/* Same switch as above, but using decimal code */
mySwitch.send(5393, 24);
delay(1000);
mySwitch.send(5396, 24);
delay(1000);
/* Same switch as above, but using binary code */
mySwitch.send("000000000001010100010001");
delay(1000);
mySwitch.send("000000000001010100010100");
delay(1000);
/* Same switch as above, but tri-state code */
mySwitch.sendTriState("00000FFF0F0F");
delay(1000);
mySwitch.sendTriState("00000FFF0FF0");
delay(1000);
delay(20000);
}

View File

@ -0,0 +1,40 @@
/*
Example for outlets which are configured with a 10 pole DIP switch.
http://code.google.com/p/rc-switch/
*/
#include <RCSwitch.h>
RCSwitch mySwitch = RCSwitch();
void setup() {
// Transmitter is connected to Arduino Pin #10
mySwitch.enableTransmit(10);
// Optional set pulse length.
// mySwitch.setPulseLength(320);
}
void loop() {
// Switch on:
// The first parameter represents the setting of the first 5 DIP switches.
// In this example it's ON-ON-OFF-OFF-ON.
//
// The second parameter represents the setting of the last 5 DIP switches.
// In this example the last 5 DIP switches are OFF-ON-OFF-ON-OFF.
mySwitch.switchOn("11001", "01010");
// Wait a second
delay(1000);
// Switch off
mySwitch.switchOff("11001", "01010");
// Wait another second
delay(1000);
}

View File

@ -0,0 +1,43 @@
/*
This is a minimal sketch without using the library at all but only works for
the 10 pole dip switch sockets. It saves a lot of memory and thus might be
very useful to use with ATTinys :)
http://code.google.com/p/rc-switch/
*/
int RCLpin = 7;
void setup() {
pinMode(RCLpin, OUTPUT);
}
void loop() {
RCLswitch(0b010001000001); // DIPs an Steckdose: 0100010000 An:01
delay(2000);
RCLswitch(0b010001000010); // DIPs an Steckdose: 0100010000 Aus:10
delay(2000);
}
void RCLswitch(uint16_t code) {
for (int nRepeat=0; nRepeat<6; nRepeat++) {
for (int i=4; i<16; i++) {
RCLtransmit(1,3);
if (((code << (i-4)) & 2048) > 0) {
RCLtransmit(1,3);
} else {
RCLtransmit(3,1);
}
}
RCLtransmit(1,31);
}
}
void RCLtransmit(int nHighPulses, int nLowPulses) {
digitalWrite(RCLpin, HIGH);
delayMicroseconds( 350 * nHighPulses);
digitalWrite(RCLpin, LOW);
delayMicroseconds( 350 * nLowPulses);
}

View File

@ -0,0 +1,40 @@
/*
Example for outlets which are configured with two rotary/sliding switches.
http://code.google.com/p/rc-switch/
*/
#include <RCSwitch.h>
RCSwitch mySwitch = RCSwitch();
void setup() {
// Transmitter is connected to Arduino Pin #10
mySwitch.enableTransmit(10);
// Optional set pulse length.
// mySwitch.setPulseLength(320);
}
void loop() {
// Switch on:
// The first parameter represents the setting of the first rotary switch.
// In this example it's switched to "1" or "A" or "I".
//
// The second parameter represents the setting of the second rotary switch.
// In this example it's switched to "4" or "D" or "IV".
mySwitch.switchOn(1, 4);
// Wait a second
delay(1000);
// Switch off
mySwitch.switchOff(1, 4);
// Wait another second
delay(1000);
}

View File

@ -0,0 +1,40 @@
/*
Example for Intertechno outlets
http://code.google.com/p/rc-switch/
*/
#include <RCSwitch.h>
RCSwitch mySwitch = RCSwitch();
void setup() {
// Transmitter is connected to Arduino Pin #10
mySwitch.enableTransmit(10);
// Optional set pulse length.
// mySwitch.setPulseLength(320);
}
void loop() {
// Switch on:
// The first parameter represents the familycode (a, b, c, ... f)
// The second parameter represents the group number
// The third parameter represents the device number
//
// In this example it's family 'b', group #3, device #2
mySwitch.switchOn('b', 3, 2);
// Wait a second
delay(1000);
// Switch off
mySwitch.switchOff('b', 3, 2);
// Wait another second
delay(1000);
}

View File

@ -0,0 +1,41 @@
/*
Example for REV outlets (e.g. 8342L)
http://code.google.com/p/rc-switch/
Need help? http://forum.ardumote.com
*/
#include <RCSwitch.h>
RCSwitch mySwitch = RCSwitch();
void setup() {
// Transmitter is connected to Arduino Pin #10
mySwitch.enableTransmit(10);
// set pulse length.
mySwitch.setPulseLength(360);
}
void loop() {
// Switch on:
// The first parameter represents the channel (a, b, c, d)
// The second parameter represents the device number
//
// In this example it's family 'd', device #2
mySwitch.switchOn('d', 2);
// Wait a second
delay(1000);
// Switch off
mySwitch.switchOff('d', 2);
// Wait another second
delay(1000);
}

View File

@ -0,0 +1,154 @@
/*
A simple RCSwitch/Ethernet/Webserver demo
http://code.google.com/p/rc-switch/
*/
#include <SPI.h>
#include <Ethernet.h>
#include <RCSwitch.h>
// Ethernet configuration
byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED }; // MAC Address
byte ip[] = { 192,168,0, 2 }; // IP Address
EthernetServer server(80); // Server Port 80
// RCSwitch configuration
RCSwitch mySwitch = RCSwitch();
int RCTransmissionPin = 7;
// More to do...
// You should also modify the processCommand() and
// httpResponseHome() functions to fit your needs.
/**
* Setup
*/
void setup() {
Ethernet.begin(mac, ip);
server.begin();
mySwitch.enableTransmit( RCTransmissionPin );
}
/**
* Loop
*/
void loop() {
char* command = httpServer();
}
/**
* Command dispatcher
*/
void processCommand(char* command) {
if (strcmp(command, "1-on") == 0) {
mySwitch.switchOn(1,1);
} else if (strcmp(command, "1-off") == 0) {
mySwitch.switchOff(1,1);
} else if (strcmp(command, "2-on") == 0) {
mySwitch.switchOn(1,2);
} else if (strcmp(command, "2-off") == 0) {
mySwitch.switchOff(1,2);
}
}
/**
* HTTP Response with homepage
*/
void httpResponseHome(EthernetClient c) {
c.println("HTTP/1.1 200 OK");
c.println("Content-Type: text/html");
c.println();
c.println("<html>");
c.println("<head>");
c.println( "<title>RCSwitch Webserver Demo</title>");
c.println( "<style>");
c.println( "body { font-family: Arial, sans-serif; font-size:12px; }");
c.println( "</style>");
c.println("</head>");
c.println("<body>");
c.println( "<h1>RCSwitch Webserver Demo</h1>");
c.println( "<ul>");
c.println( "<li><a href=\"./?1-on\">Switch #1 on</a></li>");
c.println( "<li><a href=\"./?1-off\">Switch #1 off</a></li>");
c.println( "</ul>");
c.println( "<ul>");
c.println( "<li><a href=\"./?2-on\">Switch #2 on</a></li>");
c.println( "<li><a href=\"./?2-off\">Switch #2 off</a></li>");
c.println( "</ul>");
c.println( "<hr>");
c.println( "<a href=\"http://code.google.com/p/rc-switch/\">http://code.google.com/p/rc-switch/</a>");
c.println("</body>");
c.println("</html>");
}
/**
* HTTP Redirect to homepage
*/
void httpResponseRedirect(EthernetClient c) {
c.println("HTTP/1.1 301 Found");
c.println("Location: /");
c.println();
}
/**
* HTTP Response 414 error
* Command must not be longer than 30 characters
**/
void httpResponse414(EthernetClient c) {
c.println("HTTP/1.1 414 Request URI too long");
c.println("Content-Type: text/plain");
c.println();
c.println("414 Request URI too long");
}
/**
* Process HTTP requests, parse first request header line and
* call processCommand with GET query string (everything after
* the ? question mark in the URL).
*/
char* httpServer() {
EthernetClient client = server.available();
if (client) {
char sReturnCommand[32];
int nCommandPos=-1;
sReturnCommand[0] = '\0';
while (client.connected()) {
if (client.available()) {
char c = client.read();
if ((c == '\n') || (c == ' ' && nCommandPos>-1)) {
sReturnCommand[nCommandPos] = '\0';
if (strcmp(sReturnCommand, "\0") == 0) {
httpResponseHome(client);
} else {
processCommand(sReturnCommand);
httpResponseRedirect(client);
}
break;
}
if (nCommandPos>-1) {
sReturnCommand[nCommandPos++] = c;
}
if (c == '?' && nCommandPos == -1) {
nCommandPos = 0;
}
}
if (nCommandPos > 30) {
httpResponse414(client);
sReturnCommand[0] = '\0';
break;
}
}
if (nCommandPos!=-1) {
sReturnCommand[nCommandPos] = '\0';
}
// give the web browser time to receive the data
delay(1);
client.stop();
return sReturnCommand;
}
return '\0';
}

View File

@ -0,0 +1,57 @@
#######################################
# Syntax Coloring Map For RCSwitch
#######################################
#######################################
# Datatypes (KEYWORD1)
#######################################
RCSwitch KEYWORD1
#######################################
# Methods and Functions (KEYWORD2)
#######################################
##########
#SENDS Begin
##########
switchOn KEYWORD2
switchOff KEYWORD2
sendTriState KEYWORD2
send KEYWORD2
##########
#SENDS End
##########
##########
#RECEIVE Begin
##########
enableReceive KEYWORD2
disableReceive KEYWORD2
available KEYWORD2
resetAvailable KEYWORD2
setReceiveTolerance KEYWORD2
getReceivedValue KEYWORD2
getReceivedBitlength KEYWORD2
getReceivedDelay KEYWORD2
getReceivedProtocol KEYWORD2
getReceivedRawdata KEYWORD2
##########
#RECEIVE End
##########
##########
#OTHERS Begin
##########
enableTransmit KEYWORD2
disableTransmit KEYWORD2
setPulseLength KEYWORD2
setProtocol KEYWORD2
setRepeatTransmit KEYWORD2
##########
#OTHERS End
##########
#######################################
# Constants (LITERAL1)
#######################################

View File

@ -0,0 +1,489 @@
/*
SoftwareSerial.cpp (formerly NewSoftSerial.cpp) -
Multi-instance software serial library for Arduino/Wiring
-- Interrupt-driven receive and other improvements by ladyada
(http://ladyada.net)
-- Tuning, circular buffer, derivation from class Print/Stream,
multi-instance support, porting to 8MHz processors,
various optimizations, PROGMEM delay tables, inverse logic and
direct port writing by Mikal Hart (http://www.arduiniana.org)
-- Pin change interrupt macros by Paul Stoffregen (http://www.pjrc.com)
-- 20MHz processor support by Garrett Mace (http://www.macetech.com)
-- ATmega1280/2560 support by Brett Hagman (http://www.roguerobotics.com/)
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
The latest version of this library can always be found at
http://arduiniana.org.
*/
// When set, _DEBUG co-opts pins 11 and 13 for debugging with an
// oscilloscope or logic analyzer. Beware: it also slightly modifies
// the bit times, so don't rely on it too much at high baud rates
#define _DEBUG 0
#define _DEBUG_PIN1 11
#define _DEBUG_PIN2 13
//
// Includes
//
#include <avr/interrupt.h>
#include <avr/pgmspace.h>
#include <Arduino.h>
#include <SoftwareSerial_Tiny.h>
#include <util/delay_basic.h>
//
// Statics
//
SoftwareSerial *SoftwareSerial::active_object = 0;
char SoftwareSerial::_receive_buffer[_SS_MAX_RX_BUFF];
volatile uint8_t SoftwareSerial::_receive_buffer_tail = 0;
volatile uint8_t SoftwareSerial::_receive_buffer_head = 0;
//
// Debugging
//
// This function generates a brief pulse
// for debugging or measuring on an oscilloscope.
inline void DebugPulse(uint8_t pin, uint8_t count)
{
#if _DEBUG
volatile uint8_t *pport = portOutputRegister(digitalPinToPort(pin));
uint8_t val = *pport;
while (count--)
{
*pport = val | digitalPinToBitMask(pin);
*pport = val;
}
#endif
}
//
// Private methods
//
/* static */
inline void SoftwareSerial::tunedDelay(uint16_t delay) {
_delay_loop_2(delay);
}
// This function sets the current object as the "listening"
// one and returns true if it replaces another
bool SoftwareSerial::listen()
{
if (!_rx_delay_stopbit)
return false;
if (active_object != this)
{
if (active_object)
active_object->stopListening();
_buffer_overflow = false;
_receive_buffer_head = _receive_buffer_tail = 0;
active_object = this;
setRxIntMsk(true);
return true;
}
return false;
}
// Stop listening. Returns true if we were actually listening.
bool SoftwareSerial::stopListening()
{
if (active_object == this)
{
setRxIntMsk(false);
active_object = NULL;
return true;
}
return false;
}
//
// The receive routine called by the interrupt handler
//
void SoftwareSerial::recv()
{
#if GCC_VERSION < 40302
// Work-around for avr-gcc 4.3.0 OSX version bug
// Preserve the registers that the compiler misses
// (courtesy of Arduino forum user *etracer*)
asm volatile(
"push r18 \n\t"
"push r19 \n\t"
"push r20 \n\t"
"push r21 \n\t"
"push r22 \n\t"
"push r23 \n\t"
"push r26 \n\t"
"push r27 \n\t"
::);
#endif
uint8_t d = 0;
// If RX line is high, then we don't see any start bit
// so interrupt is probably not for us
if (_inverse_logic ? rx_pin_read() : !rx_pin_read())
{
// Disable further interrupts during reception, this prevents
// triggering another interrupt directly after we return, which can
// cause problems at higher baudrates.
setRxIntMsk(false);
// Wait approximately 1/2 of a bit width to "center" the sample
tunedDelay(_rx_delay_centering);
DebugPulse(_DEBUG_PIN2, 1);
// Read each of the 8 bits
for (uint8_t i=8; i > 0; --i)
{
tunedDelay(_rx_delay_intrabit);
d >>= 1;
DebugPulse(_DEBUG_PIN2, 1);
if (rx_pin_read())
d |= 0x80;
}
if (_inverse_logic)
d = ~d;
// if buffer full, set the overflow flag and return
uint8_t next = (_receive_buffer_tail + 1) % _SS_MAX_RX_BUFF;
if (next != _receive_buffer_head)
{
// save new data in buffer: tail points to where byte goes
_receive_buffer[_receive_buffer_tail] = d; // save new byte
_receive_buffer_tail = next;
}
else
{
DebugPulse(_DEBUG_PIN1, 1);
_buffer_overflow = true;
}
// skip the stop bit
tunedDelay(_rx_delay_stopbit);
DebugPulse(_DEBUG_PIN1, 1);
// Re-enable interrupts when we're sure to be inside the stop bit
setRxIntMsk(true);
}
#if GCC_VERSION < 40302
// Work-around for avr-gcc 4.3.0 OSX version bug
// Restore the registers that the compiler misses
asm volatile(
"pop r27 \n\t"
"pop r26 \n\t"
"pop r23 \n\t"
"pop r22 \n\t"
"pop r21 \n\t"
"pop r20 \n\t"
"pop r19 \n\t"
"pop r18 \n\t"
::);
#endif
}
uint8_t SoftwareSerial::rx_pin_read()
{
return *_receivePortRegister & _receiveBitMask;
}
//
// Interrupt handling
//
/* static */
inline void SoftwareSerial::handle_interrupt()
{
if (active_object)
{
active_object->recv();
}
}
#if defined(PCINT0_vect)
//ISR(PCINT0_vect) {
// SoftwareSerial::handle_interrupt();
//}
#endif
#if defined(PCINT1_vect)
ISR(PCINT1_vect, ISR_ALIASOF(PCINT0_vect));
#endif
#if defined(PCINT2_vect)
ISR(PCINT2_vect, ISR_ALIASOF(PCINT0_vect));
#endif
#if defined(PCINT3_vect)
ISR(PCINT3_vect, ISR_ALIASOF(PCINT0_vect));
#endif
//
// Constructor
//
SoftwareSerial::SoftwareSerial(uint8_t receivePin, uint8_t transmitPin, bool inverse_logic /* = false */) :
_rx_delay_centering(0),
_rx_delay_intrabit(0),
_rx_delay_stopbit(0),
_tx_delay(0),
_buffer_overflow(false),
_inverse_logic(inverse_logic)
{
setTX(transmitPin);
setRX(receivePin);
}
//
// Destructor
//
SoftwareSerial::~SoftwareSerial()
{
end();
}
void SoftwareSerial::setTX(uint8_t tx)
{
// First write, then set output. If we do this the other way around,
// the pin would be output low for a short while before switching to
// output hihg. Now, it is input with pullup for a short while, which
// is fine. With inverse logic, either order is fine.
digitalWrite(tx, _inverse_logic ? LOW : HIGH);
pinMode(tx, OUTPUT);
_transmitBitMask = digitalPinToBitMask(tx);
uint8_t port = digitalPinToPort(tx);
_transmitPortRegister = portOutputRegister(port);
}
void SoftwareSerial::setRX(uint8_t rx)
{
pinMode(rx, INPUT);
if (!_inverse_logic)
digitalWrite(rx, HIGH); // pullup for normal logic!
_receivePin = rx;
_receiveBitMask = digitalPinToBitMask(rx);
uint8_t port = digitalPinToPort(rx);
_receivePortRegister = portInputRegister(port);
}
uint16_t SoftwareSerial::subtract_cap(uint16_t num, uint16_t sub) {
if (num > sub)
return num - sub;
else
return 1;
}
//
// Public methods
//
void SoftwareSerial::begin(long speed)
{
_rx_delay_centering = _rx_delay_intrabit = _rx_delay_stopbit = _tx_delay = 0;
// Precalculate the various delays, in number of 4-cycle delays
uint16_t bit_delay = (F_CPU / speed) / 4;
// 12 (gcc 4.8.2) or 13 (gcc 4.3.2) cycles from start bit to first bit,
// 15 (gcc 4.8.2) or 16 (gcc 4.3.2) cycles between bits,
// 12 (gcc 4.8.2) or 14 (gcc 4.3.2) cycles from last bit to stop bit
// These are all close enough to just use 15 cycles, since the inter-bit
// timings are the most critical (deviations stack 8 times)
_tx_delay = subtract_cap(bit_delay, 15 / 4);
// Only setup rx when we have a valid PCINT for this pin
if (digitalPinToPCICR(_receivePin)) {
#if GCC_VERSION > 40800
// Timings counted from gcc 4.8.2 output. This works up to 115200 on
// 16Mhz and 57600 on 8Mhz.
//
// When the start bit occurs, there are 3 or 4 cycles before the
// interrupt flag is set, 4 cycles before the PC is set to the right
// interrupt vector address and the old PC is pushed on the stack,
// and then 75 cycles of instructions (including the RJMP in the
// ISR vector table) until the first delay. After the delay, there
// are 17 more cycles until the pin value is read (excluding the
// delay in the loop).
// We want to have a total delay of 1.5 bit time. Inside the loop,
// we already wait for 1 bit time - 23 cycles, so here we wait for
// 0.5 bit time - (71 + 18 - 22) cycles.
_rx_delay_centering = subtract_cap(bit_delay / 2, (4 + 4 + 75 + 17 - 23) / 4);
// There are 23 cycles in each loop iteration (excluding the delay)
_rx_delay_intrabit = subtract_cap(bit_delay, 23 / 4);
// There are 37 cycles from the last bit read to the start of
// stopbit delay and 11 cycles from the delay until the interrupt
// mask is enabled again (which _must_ happen during the stopbit).
// This delay aims at 3/4 of a bit time, meaning the end of the
// delay will be at 1/4th of the stopbit. This allows some extra
// time for ISR cleanup, which makes 115200 baud at 16Mhz work more
// reliably
_rx_delay_stopbit = subtract_cap(bit_delay * 3 / 4, (37 + 11) / 4);
#else // Timings counted from gcc 4.3.2 output
// Note that this code is a _lot_ slower, mostly due to bad register
// allocation choices of gcc. This works up to 57600 on 16Mhz and
// 38400 on 8Mhz.
_rx_delay_centering = subtract_cap(bit_delay / 2, (4 + 4 + 97 + 29 - 11) / 4);
_rx_delay_intrabit = subtract_cap(bit_delay, 11 / 4);
_rx_delay_stopbit = subtract_cap(bit_delay * 3 / 4, (44 + 17) / 4);
#endif
// Enable the PCINT for the entire port here, but never disable it
// (others might also need it, so we disable the interrupt by using
// the per-pin PCMSK register).
*digitalPinToPCICR(_receivePin) |= _BV(digitalPinToPCICRbit(_receivePin));
// Precalculate the pcint mask register and value, so setRxIntMask
// can be used inside the ISR without costing too much time.
_pcint_maskreg = digitalPinToPCMSK(_receivePin);
_pcint_maskvalue = _BV(digitalPinToPCMSKbit(_receivePin));
tunedDelay(_tx_delay); // if we were low this establishes the end
}
#if _DEBUG
pinMode(_DEBUG_PIN1, OUTPUT);
pinMode(_DEBUG_PIN2, OUTPUT);
#endif
listen();
}
void SoftwareSerial::setRxIntMsk(bool enable)
{
if (enable)
*_pcint_maskreg |= _pcint_maskvalue;
else
*_pcint_maskreg &= ~_pcint_maskvalue;
}
void SoftwareSerial::end()
{
stopListening();
}
// Read data from buffer
int SoftwareSerial::read()
{
if (!isListening())
return -1;
// Empty buffer?
if (_receive_buffer_head == _receive_buffer_tail)
return -1;
// Read from "head"
uint8_t d = _receive_buffer[_receive_buffer_head]; // grab next byte
_receive_buffer_head = (_receive_buffer_head + 1) % _SS_MAX_RX_BUFF;
return d;
}
int SoftwareSerial::available()
{
if (!isListening())
return 0;
return (_receive_buffer_tail + _SS_MAX_RX_BUFF - _receive_buffer_head) % _SS_MAX_RX_BUFF;
}
size_t SoftwareSerial::write(uint8_t b)
{
if (_tx_delay == 0) {
setWriteError();
return 0;
}
// By declaring these as local variables, the compiler will put them
// in registers _before_ disabling interrupts and entering the
// critical timing sections below, which makes it a lot easier to
// verify the cycle timings
volatile uint8_t *reg = _transmitPortRegister;
uint8_t reg_mask = _transmitBitMask;
uint8_t inv_mask = ~_transmitBitMask;
uint8_t oldSREG = SREG;
bool inv = _inverse_logic;
uint16_t delay = _tx_delay;
if (inv)
b = ~b;
cli(); // turn off interrupts for a clean txmit
// Write the start bit
if (inv)
*reg |= reg_mask;
else
*reg &= inv_mask;
tunedDelay(delay);
// Write each of the 8 bits
for (uint8_t i = 8; i > 0; --i)
{
if (b & 1) // choose bit
*reg |= reg_mask; // send 1
else
*reg &= inv_mask; // send 0
tunedDelay(delay);
b >>= 1;
}
// restore pin to natural state
if (inv)
*reg &= inv_mask;
else
*reg |= reg_mask;
SREG = oldSREG; // turn interrupts back on
tunedDelay(_tx_delay);
return 1;
}
void SoftwareSerial::flush()
{
if (!isListening())
return;
uint8_t oldSREG = SREG;
cli();
_receive_buffer_head = _receive_buffer_tail = 0;
SREG = oldSREG;
}
int SoftwareSerial::peek()
{
if (!isListening())
return -1;
// Empty buffer?
if (_receive_buffer_head == _receive_buffer_tail)
return -1;
// Read from "head"
return _receive_buffer[_receive_buffer_head];
}

View File

@ -0,0 +1,121 @@
/*
SoftwareSerial.h (formerly NewSoftSerial.h) -
Multi-instance software serial library for Arduino/Wiring
-- Interrupt-driven receive and other improvements by ladyada
(http://ladyada.net)
-- Tuning, circular buffer, derivation from class Print/Stream,
multi-instance support, porting to 8MHz processors,
various optimizations, PROGMEM delay tables, inverse logic and
direct port writing by Mikal Hart (http://www.arduiniana.org)
-- Pin change interrupt macros by Paul Stoffregen (http://www.pjrc.com)
-- 20MHz processor support by Garrett Mace (http://www.macetech.com)
-- ATmega1280/2560 support by Brett Hagman (http://www.roguerobotics.com/)
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
The latest version of this library can always be found at
http://arduiniana.org.
*/
#ifndef SoftwareSerial_h
#define SoftwareSerial_h
#include <inttypes.h>
#include <Stream.h>
/******************************************************************************
* Definitions
******************************************************************************/
#define _SS_MAX_RX_BUFF 64 // RX buffer size
#ifndef GCC_VERSION
#define GCC_VERSION (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__)
#endif
class SoftwareSerial : public Stream
{
private:
// per object data
uint8_t _receivePin;
uint8_t _receiveBitMask;
volatile uint8_t *_receivePortRegister;
uint8_t _transmitBitMask;
volatile uint8_t *_transmitPortRegister;
volatile uint8_t *_pcint_maskreg;
uint8_t _pcint_maskvalue;
// Expressed as 4-cycle delays (must never be 0!)
uint16_t _rx_delay_centering;
uint16_t _rx_delay_intrabit;
uint16_t _rx_delay_stopbit;
uint16_t _tx_delay;
uint16_t _buffer_overflow:1;
uint16_t _inverse_logic:1;
// static data
static char _receive_buffer[_SS_MAX_RX_BUFF];
static volatile uint8_t _receive_buffer_tail;
static volatile uint8_t _receive_buffer_head;
static SoftwareSerial *active_object;
// private methods
void recv() __attribute__((__always_inline__));
uint8_t rx_pin_read();
void tx_pin_write(uint8_t pin_state) __attribute__((__always_inline__));
void setTX(uint8_t transmitPin);
void setRX(uint8_t receivePin);
void setRxIntMsk(bool enable) __attribute__((__always_inline__));
// Return num - sub, or 1 if the result would be < 1
static uint16_t subtract_cap(uint16_t num, uint16_t sub);
// private static method for timing
static inline void tunedDelay(uint16_t delay);
public:
// public methods
SoftwareSerial(uint8_t receivePin, uint8_t transmitPin, bool inverse_logic = false);
~SoftwareSerial();
void begin(long speed);
bool listen();
void end();
bool isListening() { return this == active_object; }
bool stopListening();
bool overflow() { bool ret = _buffer_overflow; if (ret) _buffer_overflow = false; return ret; }
int peek();
virtual size_t write(uint8_t byte);
virtual int read();
virtual int available();
virtual void flush();
operator bool() { return true; }
using Print::write;
// public only for easy access by interrupt handlers
static inline void handle_interrupt() __attribute__((__always_inline__));
};
// Arduino 0012 workaround
#undef int
#undef char
#undef long
#undef byte
#undef float
#undef abs
#undef round
#endif

View File

@ -0,0 +1,30 @@
#######################################
# Syntax Coloring Map for SoftwareSerial
# (formerly NewSoftSerial)
#######################################
#######################################
# Datatypes (KEYWORD1)
#######################################
SoftwareSerial KEYWORD1
#######################################
# Methods and Functions (KEYWORD2)
#######################################
begin KEYWORD2
end KEYWORD2
read KEYWORD2
write KEYWORD2
available KEYWORD2
isListening KEYWORD2
overflow KEYWORD2
flush KEYWORD2
listen KEYWORD2
peek KEYWORD2
#######################################
# Constants (LITERAL1)
#######################################

View File

@ -0,0 +1,9 @@
name=SoftwareSerial_Tiny
version=1.0
author=Arduino
maintainer=Arduino <info@arduino.cc>
sentence=Enables serial communication on digital pins. For all Arduino boards, BUT Arduino DUE.
paragraph=
url=http://www.arduino.cc/en/Reference/SoftwareSerial
architectures=avr

View File

@ -0,0 +1,51 @@
#pragma once
#include <avr/sleep.h>
#include <avr/power.h>
#include <avr/wdt.h>
// Utility macros
#define adc_disable() (ADCSRA &= ~_BV(ADEN)) // disable ADC (before power-off)
#define adc_enable() (ADCSRA |= _BV(ADEN)) // re-enable ADC
#define enable_pin_interrupts() (GIMSK |= _BV(PCIE)) // Enable Pin Change Interrupts
class TinyPower {
public:
static void setup() {
set_sleep_mode(SLEEP_MODE_PWR_DOWN);
enable_pin_interrupts();
enableWdt();
}
static void sleep() {
PCMSK |= _BV(PCINT0); // Use PB0 as interrupt pin
adc_disable();
sleep_enable(); // Sets the Sleep Enable bit in the MCUCR Register (SE BIT)
sei(); // Enable interrupts
sleep_cpu(); // sleep
cli(); // Disable interrupts
PCMSK &= ~_BV(PCINT0); // Turn off PB0 as interrupt pin
sleep_disable(); // Clear SE bit
adc_enable();
sei(); // Enable interrupts
}
//enable the wdt for 8sec interrupt
static void enableWdt()
{
MCUSR = 0x00;
WDTCR |= _BV(WDCE) | _BV(WDE);
WDTCR = _BV(WDIE) | _BV(WDP3) | _BV(WDP0); //8192ms
}
static void disableWdt() {
MCUSR = 0x00;
WDTCR |= _BV(WDCE) | _BV(WDE);
WDTCR = 0x00;
}
};

View File

@ -0,0 +1,55 @@
#pragma once
#include <RCSwitch.h>
class TinySensor {
short id;
short senderPin;
RCSwitch mySwitch = RCSwitch();
public:
TinySensor(short id, short senderPin) {
this->id = id;
this->senderPin = senderPin;
}
void setup() {
mySwitch.enableTransmit(senderPin);
mySwitch.setProtocol(2);
}
void sendWindowState(bool state) {
unsigned long value = 0x70000000;
value |= readVcc() << 6;
value |= !state << 5;
value |= id;
mySwitch.send(value, 32);
}
long readVcc() {
// Read 1.1V reference against AVcc
// set the reference to Vcc and the measurement to the internal 1.1V reference
#if defined(__AVR_ATmega32U4__) || defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
ADMUX = _BV(REFS0) | _BV(MUX4) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1);
#elif defined (__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__)
ADMUX = _BV(MUX5) | _BV(MUX0);
#elif defined (__AVR_ATtiny25__) || defined(__AVR_ATtiny45__) || defined(__AVR_ATtiny85__)
ADMUX = _BV(MUX3) | _BV(MUX2);
#else
ADMUX = _BV(REFS0) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1);
#endif
delay(2); // Wait for Vref to settle
ADCSRA |= _BV(ADSC); // Start conversion
while (bit_is_set(ADCSRA, ADSC))
; // measuring
uint8_t low = ADCL; // must read ADCL first - it then locks ADCH
uint8_t high = ADCH; // unlocks both
long result = (high << 8) | low;
result = 1125300L / result; // Calculate Vcc (in mV); 1125300 = 1.1*1023*1000
return result; // Vcc in millivolts
}
};